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ABSTRACT

The marine natural product amphidinolide J has been synthesized according to a convergent strategy. The key steps of this synthesis include
a B-alkyl Suzuki-Miyaura coupling and the addition of an alkynyllithium reagent to a Weinreb amide to build the C4-C5 and C12-C13 bonds,
respectively, and a Yamaguchi macrolactonization.

The extracts from the marine dinoflagellate Amphidinum sp.
have provided an impressive number of structurally diverse
potent cytotoxic macrolides named amphidinolides.1 Am-
phidinolide J, first isolated in 1993, is a 15-membered
macrolactone polyketide bearing six stereocenters (C3, C9,
C10, C13-C15), three disubstituted double bonds of E
configuration (C7-C8, C11-C12, and C16-C17) as well
as a methylene unit (at C4), which is a structural feature
encountered in almost all amphidinolides.2 Its absolute
stereochemistry was ascertained by ozonolysis and stereo-
selective synthesis of the resulting degradation products.2

Amphidinolide J exhibits cytotoxic activity against L1210
murine leukemia (IC50 ) 2.7 µg/mL) and KB human
epidermoid carcinoma cells (IC50 ) 3.9 µg/mL).2 In 1997,
amphidinolides S and R, two minor congeners of amphidi-
nolide J differing by the presence of a carbonyl group at C9
or from the size of the macrolactone (14-membered ring),
were also isolated (Figure 1).3

To date, only one total synthesis of amphidinolide J has
been accomplished by Williams and Kissel in 19984 using
a Negishi cross-coupling and a vinylzincate addition to an
aldehyde to build the C6-C7 and C12-C13 bonds, respec-
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Figure 1. Structures of amphidinolides J, R, and S.
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tively, as well as a Yamaguchi macrolactonization. Herein,
we would like to report a new convergent total synthesis of
amphidinolide J and its formation from amphidinolide R by
intramolecular transesterification.

In our retrosynthetic analysis of amphidinolide J, the
formation of the macrolactone was envisaged from a seco-
acid which was disconnected at the C4-C5 and C12-C13
bonds. The formation of the C4-C5 bond would be achieved
by a B-alkyl Suzuki-Miyaura cross-coupling between the
alkenyl iodide A (C1-C4 subunit) and a boronate generated
from the primary alkyl iodide B (C5-C12 subunit).5 The
C12-C13 bond would be created by the addition of an
alkynyllithium reagent, generated from the alkynylsilane at C12,
to the Weinreb amide C (C13-C20 subunit) (Scheme 1).

The synthesis of the C1-C4 fragment was first carried
out. The lithium enolate generated from (1S,2S)-pseudoephe-
drine propionamide 1 underwent a diastereoselective alky-
lation with the THP ether derived from 2-iodoethanol and
the resulting amide (98%, dr g 95/5)6,7 was subsequently
converted to methyl ketone 2 by treatment with MeLi (96%).
Ketone 2 was condensed with trisylhydrazide and trisylhy-
drazone 3 (81%) underwent a Shapiro reaction followed by
iodinolysis of the alkenyllithium intermediate to afford
alkenyl iodide 4 (87%). Thus, the C1-C4 subunit of
amphidinolide J was prepared in four steps from amide 1,
in 66% overall yield (Scheme 2).

The preparation of the C5-C12 fragment started with a
cross-metathesis between homoallylic ether 5 and acrolein
in the presence of Hoveyda-Grubbs catalyst H-II to provide
the R,�-unsaturated aldehyde 6 (89%).8 To introduce the two
stereogenic centers at C9 and C10, aldehyde 6 was involved
in an enantio- and diastereoselective crotyltitanation, with
the (E)-crotyltitanium complex (S,S)-Ti-I, and homoallylic

alcohol 7 (96%, ee ) 92%, dr > 99/1) was obtained.9,10

Protection of the secondary alcohol at C9 as a bulky
triisopropylsilyl ether (96%) allowed a chemoselective di-
hydroxylation of the terminal alkene leading to the 1,2-diol
8 (72%, dr ) 85/15).11,12 After oxidative cleavage with
NaIO4, the resulting sensitive aldehyde was converted to the
gem-dibromoolefin 9 (77%, two steps from 8) and subsequent
treatment with n-BuLi (THF, -78 °C), followed by silylation
of the resulting alkynyllithium intermediate, provided alky-
nylsilane 10 (87%).13 The alcohol at C5 was then depro-
tected14 and converted to alkyl iodide 11 (92%).15 The
preparation of the C5-C12 fragment of amphidinolide J was
therefore achieved in nine steps from homoallylic ether 5,
in 36% overall yield (Scheme 3).

The synthesis of the C13-C20 fragment was carried out
from the acetylenic ketone 1216 which underwent enantio-
selective reduction catalyzed by ruthenium complex
(R,R)-Ru-II in i-PrOH.17 The corresponding propargylic
alcohol (97%, ee ) 95%)18 was condensed with (4-methoxy-
benzyloxy)acetic acid (93%) followed by semihydrogenation
of the triple bond to provide the (Z)-allylic glycolate 13
(93%). The latter compound was converted to the corre-
sponding (Z)-silylketene acetal which underwent [3,3]-
glycolate-Claisen rearrangement.19 After hydrolysis, the
resulting carboxylic acid was treated with trimethylsilyldia-
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Scheme 1. Retrosynthetic Analysis of Amphidinolide J

Scheme 2. Synthesis of the C1-C4 Subunit
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zomethane20 and methyl ester 14 was obtained with high
diastereoselectivity (87%, dr > 95/5) as a result of a chairlike
transition state in which the propyl group preferentially
occupies an equatorial position.19 Methyl ester 14 was
converted to Weinreb amide 15 (84%)21 and the C13-C20
subunit of amphinidolide J was thus synthesized in six steps
from ketone 12, in 61% overall yield (Scheme 4).

Having synthesized the three subunits, their coupling was
then studied. Alkyl iodide 11 was converted to a B-alkyl-
boronatewhichunderwentapalladium-catalyzedSuzuki-Miyaura
coupling with the alkenyl iodide 4 to afford compound 16
in 82% yield.5,22 After removal of the acetylenic TMS group
(92%), the terminal alkyne was lithiated and condensed with
Weinreb amide 15 to provide the acetylenic ketone 17 in
quantitative yield.23 To create the C13 stereocenter, ketone
17 underwent a diastereoselective reduction catalyzed by
(S,S)-Ru-II (reagent-controlled),17 and the resulting propar-
gylic alcohol (96%, dr > 95/5) was hydroaluminated with

Red-Al to afford the (E)-allylic alcohol 18 (84%). The
secondary alcohol at C13 was protected as an acetate and
the primary alcohol at C1 was deprotected by acid-catalyzed
methanolysis. After oxidation with Dess-Martin periodinane
and deprotection of the alcohol at C14, the seco-aldehyde
19 was obtained (83%, two steps from 18). Oxidation of the
aldehyde at C1 proceeded smoothly but afforded a mixture
of two inseparable regioisomeric seco-acids 20 and 21 (4/1
ratio) due to partial migration of the acetyl group to the
hydroxyl at C14 (Scheme 5).24

The crude mixture of seco-acids 20 and 21 was then
subjected to macrolactonization under Yamaguchi condi-
tions25 to afford the 15-membered macrolactone 22 (34%)
and the 14-membered macrolactone 23 (24%) which were
readily separated by flash chromatography. Deprotection of
the C9 hydroxyl group in compounds 22 and 23 led to
macrolactones 24 (74%) and 25 (63%), respectively. The
protecting acetyl group in the 15-membered macrolactone
24 was removed (K2CO3, MeOH, rt, 2 h) and amphidinolide
J was isolated in 61% yield. Another fraction consisting of
a 4/1 mixture of amphidinolides J and R was also isolated
(15%). Interestingly, under similar conditions (rt, 4 h), an
acyl shift took place from the 14-membered lactone 25 and
amphidinolide J was again isolated as the major product
(46%) along with a 1/1 mixture of amphidinolides J and R
(18%) (Scheme 5).26,27 The spectroscopic data of the isolated
pure amphidinolide J were in perfect agreement with those
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Scheme 3. Synthesis of the C5-C12 Subunit Scheme 4. Synthesis of the C13-C20 Subunit
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previously reported for the natural product (∆δ e 0.1 ppm
in 1H and 13C NMR) with a measured optical rotation slightly
higher ([R]D +6.7 (c 0.52, MeOH); lit2 [R]D +1.2 (c 0.7,
MeOH)).

In conclusion, we have reported a total synthesis of
amphidinolide J in 22 steps (longest linear sequence) from
homoallylic ether 5, in 4% overall yield. A Myers alkylation,
a Shapiro reaction, an enantioselective and diastereoselective
crotyltitanation and a glycolate-Claisen rearrangement were
utilized as key steps for the synthesis of the three subunits
which were successively assembled by using a B-alkyl
Suzuki-Miyaura cross-coupling (C4-C5 bond), the addition

of an alkynyllithium to a Weinreb amide (C12-C13 bond),
and a Yamaguchi macrolactonization.
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Scheme 5. Total Synthesis of Amphidinolide J
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